Calcium secretion coupling at calyx of Held governed by nonuniform channel-vesicle topography.

نویسندگان

  • Christoph J Meinrenken
  • J Gerard G Borst
  • Bert Sakmann
چکیده

Phasic transmitter release at synapses in the mammalian CNS is regulated by local [Ca2+] transients, which control the fusion of readily releasable vesicles docked at active zones (AZs) in the presynaptic membrane. The time course and amplitude of these [Ca2+] transients critically determine the time course and amplitude of the release and thus the frequency and amplitude tuning of the synaptic connection. As yet, the spatiotemporal nature of the [Ca2+] transients and the number and location of release-controlling Ca2+ channels relative to the vesicles, the "topography" of the release sites, have remained elusive. We used a time-dependent model to simulate Ca2+ influx, three-dimensional buffered Ca2+ diffusion, and the binding of Ca2+ to the release sensor. The parameters of the model were constrained by recent anatomical and biophysical data of the calyx of Held. Comparing the predictions of the model with previously measured release probabilities under a variety of experimental conditions, we inferred which release site topography is likely to operate at the calyx: At each AZ one or a few clusters of Ca2+ channels control the release of the vesicles. The distance of a vesicle to the cluster(s) varies across the multiple release sites of a single calyx (ranging from 30 to 300 nm; average approximately 100 nm). Assuming this topography, vesicles in different locations are exposed to different [Ca2+] transients, with peak amplitudes ranging from 0.5 to 40 microm (half-width approximately 400 microsec) during an action potential. Consequently the vesicles have different release probabilities ranging from <0.01 to 1. We demonstrate how this spatially heterogeneous release probability creates functional advantages for synaptic transmission.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single calcium channel domain gating of synaptic vesicle fusion at fast synapses; analysis by graphic modeling

At fast-transmitting presynaptic terminals Ca(2+) enter through voltage gated calcium channels (CaVs) and bind to a synaptic vesicle (SV) -associated calcium sensor (SV-sensor) to gate fusion and discharge. An open CaV generates a high-concentration plume, or nanodomain of Ca(2+) that dissipates precipitously with distance from the pore. At most fast synapses, such as the frog neuromuscular jun...

متن کامل

A novel region in the CaV2.1 α1 subunit C-terminus regulates fast synaptic vesicle fusion and vesicle docking at the mammalian presynaptic active zone

In central nervous system (CNS) synapses, action potential-evoked neurotransmitter release is principally mediated by CaV2.1 calcium channels (CaV2.1) and is highly dependent on the physical distance between CaV2.1 and synaptic vesicles (coupling). Although various active zone proteins are proposed to control coupling and abundance of CaV2.1 through direct interactions with the CaV2.1 α1 subuni...

متن کامل

Developmental regulation of the intracellular Ca2+ sensitivity of vesicle fusion and Ca2+-secretion coupling at the rat calyx of Held.

Developmental refinement of synaptic transmission can occur via changes in several pre- and postsynaptic factors, but it has been unknown whether the intrinsic Ca2+ sensitivity of vesicle fusion in the nerve terminal can be regulated during development. Using the calyx of Held, a giant synapse in the auditory pathway, we studied the presynaptic mechanisms underlying the developmental regulation...

متن کامل

On the Brink: A New Synaptic Vesicle Release Model at the Calyx of Held

How vesicle calcium sensors interact with calcium channels at synapses affects neurotransmitter release dynamics. In this issue of Neuron, Nakamura et al. (2015) propose that synaptic vesicles are tightly coupled around the perimeter of a voltage-gated calcium channel cluster.

متن کامل

Brain-derived neurotrophic factor inhibits calcium channel activation, exocytosis, and endocytosis at a central nerve terminal.

Brain-derived neurotrophic factor (BDNF) is a neurotrophin that regulates synaptic function and plasticity and plays important roles in neuronal development, survival, and brain disorders. Despite such diverse and important roles, how BDNF, or more generally speaking, neurotrophins affect synapses, particularly nerve terminals, remains unclear. By measuring calcium currents and membrane capacit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 5  شماره 

صفحات  -

تاریخ انتشار 2002